type
status
date
slug
summary
tags
category
icon
password
AI summary
1、应用场景-修路问题
看一个应用场景和问题:
- 有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
- 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
- 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短? 思路: 将10条边,连接即可,但是总的里程数不是最小. 正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少.
2、最小生成树
修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。
- 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
- N个顶点,一定有N-1条边
- 包含全部顶点
- N-1条边都在图中 举例说明(如图:) 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
3、普里姆算法介绍
- 普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
- 普利姆的算法如下:
- 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
- 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
- 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
- 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边 提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.
4、普里姆算法图片解析
5、普里姆算法代码实现
- 作者:IT小舟
- 链接:https://www.codezhou.top/article/%E6%99%AE%E9%87%8C%E5%A7%86%E7%AE%97%E6%B3%95
- 声明:本文采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。